Role of Pore Size Location in Determining Bacterial Activity during Predation by Protozoa in Soil.
نویسندگان
چکیده
The predation of a luminescence-marked strain of Pseudomonas fluorescens by the soil ciliate Colpoda steinii was studied in soil microcosms. Bacterial cells were introduced in either small (neck diameter, <6 (mu)m) or intermediate-sized (neck diameter, 6 to 30 (mu)m) pores in the soil by inoculation at appropriate matric potentials, and ciliates were introduced into large pores (neck diameter, 30 to 60 (mu)m). Viable cell concentrations of bacteria introduced into intermediate-sized pores decreased at a greater rate than those in small pores, with reductions in bacterial populations being accompanied by an increase in viable cell numbers of the ciliate. The data indicate that the location of bacteria in small pores provides significant protection from predation. In the absence of C. steinii, the level of metabolic activity of the bacterial population, measured by luminometry, decreased at a greater rate than cell number, and the level of luminescence cell(sup-1) consequently decreased. The decrease in levels of luminescence indicates a loss of activity due to starvation. During predation by C. steinii, the level of the activity of cells introduced into small pores fell in a similar manner. The level of cell activity was, however, significantly greater for cells introduced into intermediate-sized pores, despite their greater susceptibility to predation. The data suggest that increased activity arises from a release of nutrients by the predator and the greater accessibility of bacteria to nutrients in larger pores. Nutrient amendment of microcosms resulted in increases in bacterial populations to sustained, higher levels, while levels of luminescence increased transiently. The predation of cells introduced into intermediate-sized pores was greater, and there was also evidence that the level of activity of surviving bacteria was greater for bacteria in intermediate-sized but not small pores.
منابع مشابه
The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum
Wright, D.A., Killham, K., Glover, L.A. and Prosser, J.I., 1993. The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. In: L. Brussaard and M.J. Kooistra (Editors), Int. Workshop on Methods of Research on Soil Structure/Soil Biota Interrelationships. Geoderma, 56: 633-640. Short-term laboratory experiments were performed to investigate the effect of l...
متن کاملMolecular and chemical dialogues in bacteria-protozoa interactions
Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide protection against different protozoan genera. By combining whole-genome transcriptome analyses wi...
متن کاملInvestigating the Influence of Filter Uniformity Coefficient and Effective Pore Size on Critical Hydraulic Gradient and Maximum Erosion of Dispersive and Non-dispersive Samples
Filter is one of the main components of embankment dams. By a simple but effective performance, filter protects the dam against erosion and soil scouring in impervious core caused by leakage (piping) and makes it safe. Interaction between filter and erodible base soil is a complex phenomenon which is dependent upon several factors, and has challenged researchers for better understanding the fil...
متن کاملOff the hook--how bacteria survive protozoan grazing.
Bacterial growth and survival in numerous environments are constrained by the action of bacteria-consuming protozoa. Recent findings suggest that bacterial adaptations against protozoan predation might have a significant role in bacterial persistence and diversification. We argue that selective predation has given rise to diverse routes of bacterial defense, including adaptive mechanisms in bac...
متن کاملProtozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities
Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 61 10 شماره
صفحات -
تاریخ انتشار 1995